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Abstract
Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data gen-
erated by climate models. However, because lossy data compression does not exactly preserve the original data, its application
to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of
lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting
with model output, any suite of measures must include a means of assessing whether images generated from the compressed
model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forced-
choice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant
expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that
is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study partici-
pants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We
assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality
assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily
compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the
threshold required for climate model data is much higher than previous findings in the literature.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data Compaction and
Compression—I.5.2 [Design Methodology]: Feature evaluation—H.1.2 [User/Machine Systems]: Human factors—

1. Introduction

Climate model simulations greatly contribute to understanding and
predicting the Earth’s climate system. Recent advances in high-
performance computing have enabled such simulations to run with
higher resolutions and higher throughput, resulting in increasingly
large data volumes that many climate research computing cen-
ters are struggling to store (e.g., [HWK⇤13, BXD⇤14, BHM⇤16,
KKL16, Zen16]). For example, raw data requirements for climate
models for the upcoming Coupled Model Comparison Project
Phase 6 (CMIP6) [MMT⇤14] are likely to be nearly ten petabytes
in size for a single model. In general, scientists must be increas-
ingly cognizant of data volumes when designing experiments and
make difficult decisions in terms of running fewer or shorter simu-
lations, using lower resolutions, or outputting data less frequently.
Our particular interest in this work is in applying data compres-
sion to reduce data volumes from the Community Earth System
Model (CESM™) [HHG⇤13], a popular climate model whose de-
velopment is led by the National Center for Atmospheric Research
(NCAR).

We focus on lossy data compression schemes to reduce climate
data storage requirements, as it is well known that lossless com-
pression schemes (i.e., schemes that exactly preserve the data when
decompressed) are relatively ineffective on floating-point simula-
tion data (e.g., [LI06, LSE⇤11, LLW⇤13]). We note that there have
been a number of studies advocating lossy data compression for
climate data in particular, such as [WMB⇤11, HWK⇤13, KKL16,
BXD⇤14]. The use of lossy data compression requires care: we
must ensure that its effects on the original data do not affect scien-
tific conclusions drawn from the data. To this end, striking a balance
between effectively reducing data volume and preserving the qual-
ity of the climate simulation data is critical. Unfortunately, eval-
uating whether "data quality" has been preserved is an ill-defined
and non-trivial task that requires determining how to quantify the
loss of information due to compression. Simple measurements such
as the mean squared error (MSE) appear to be insufficient for de-
tecting lossy compression-induced artifacts of interest to climate
scientists (e.g., [BXD⇤14], [BHM⇤16]). CESM, like most climate
models, outputs a large number variables with a diversity of char-
acteristics and varying importance to scientists, further complicat-
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ing analysis. Efforts specific to evaluating the impact of lossy com-
pression on CESM data thus far include developing measures that
compare lossy compression-induced error to the internal variabil-
ity of the climate model [BXD⇤14], engaging climate scientists
in a blind study of a climate ensemble consisting of both recon-
structed (data that has undergone compression and reconstruction)
and original data [BHM⇤16], and comparing distinct types of lossy
approaches on individual CESM variables via a suite of test mea-
surements [BXH⇤17].

While post-processing analysis of CESM data takes a variety of
forms, visual assessments are ubiquitous in post-processing work-
flows. In fact, visualizations as diagnostics are quite important to
climate scientists and typically provide their first interaction with
the simulation output data. Visualizations generated by the Atmo-
sphere Working Group Diagnostics Package (AMWG-DP) and the
Climate Variability Diagnostic Package (CVDP) [PDF14] are par-
ticularly popular with climate scientists and are typically included
with the public releases of large CESM simulation data sets, such as
the CESM Large Ensemble Community Project [KDP⇤15]. As an
example, the AMWG-DP generates on the order of 1300 diagnostic
images for a typical CESM simulation, and this number only rep-
resents images for the atmospheric model component (additional
diagnostic packages exist for the other CESM components, such as
the land, ocean, and sea-ice components). CESM scientists often
view these diagnostic images from new simulations right away so
as to verify that the data looks reasonable and/or meets their ex-
pectations in some sense before proceeding with further analysis.
The work in [BHM⇤16] suggests that a goal in responsibly apply-
ing lossy compression to output data from CESM is that the re-
constructed and original data be indistinguishable during analyses.
Given the importance of diagnostic images to most climate scien-
tists (particularly when initially engaging with a new dataset), and
more generally, the importance of visualization in climate research,
it seems reasonable to require that the diagnostic images generated
not be noticeably different. Indeed, by providing assurance that the
loss of information due to data compression does not negatively af-
fect the diagnostic images, we aim to reduce the climate modeling
community’s hesitancy to fully adopting lossy data compression
(e.g., see [BHM⇤16]).

In the recent work [BXH⇤17], the suite of tests used to com-
pare lossy compression algorithms on CESM data includes a sin-
gle image quality assessment (IQA) measure: the structural sim-
ilarity index (SSIM) [WBSS04]. The authors in [BXH⇤17] indi-
cate that the SSIM threshold chosen was largely inspired by sug-
gestions from the medical imaging field, where lossy compres-
sion is typically used to reduce unmanageable data volumes (e.g.,
[CP16, KR12, Wan11, KS06]). Indeed, the loss of critical infor-
mation (a concern shared by climate scientists) is understandably
a concern with procedures such as computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasound imaging (e.g.,
[KBMG13, KMLH10, GKS⇤12b]). However, an acceptable SSIM
threshold varies by application, and the authors in [BXH⇤17] ac-
knowledge that further research is required to confidently select
one for CESM images. Beyond the selection of an application-
appropriate threshold, we add that further research should also be
undertaken to determine whether SSIM is really the most useful
IQA measure in this context.

In this work, we address the selection of an appropriate IQA (and
corresponding threshold) that can be used to indicate whether cli-
mate scientists would be able to detect a difference in CESM di-
agnostic images after lossy compression. We note that because the
original data is used in other proposed quality measures, we limit
our investigation to full-reference IQA measures. We design a vi-
sual evaluation study to determine when scientists start to perceive
visual differences between the original and reconstructed images.
We then evaluate a number of popular IQA algorithms in the con-
text of the scores from the user study to determine which is most
applicable to the CESM model data images. It is important to note
that in choosing an IQA measure and threshold, we are not attempt-
ing to determine whether or not the difference in images matters in
terms of drawing conclusions from the climate simulation data, but
rather answering the easier – and more conservative – question as
to whether any difference between images is noticeable.

This paper is organized as follows. In Section 2, we introduce
the IQA measures that we evaluate. In Section 3, we describe the
particular CESM data that we include in the study as well as the
chosen lossy data compressors. In Section 4, we describe the setup
of the user study. We present the results of our analysis in Section
5 and provide concluding remarks in Section 6.

2. Image quality measures

Our interest is in so-called full reference (FR) IQA measures,
which require the original, or reference, image for comparison.
In this study, the reference image is the CESM image gener-
ated with the original (unaltered) model output data and is read-
ily available. The altered image is the CESM image generated
from the reconstructed data (data that has undergone lossy com-
pression, followed by decompression). While the mean-squared er-
ror (MSE), or the related peak signal-to-noise ratio (PSNR), have
long been used to evaluate image quality, recent decades have seen
the introduction of a number of arguably more comprehensive FR-
IQA methods that enjoy wide popularity, such as the SSIM (e.g.,
[WBSS04, WB09, Wan11]).

Table 1 contains the IQA methods that we evaluate. While our
list of IQA measures is not exhaustive, we chose a variety that in-
cludes several different types of approaches. MATLAB® imple-
mentations for all methods listed in Table 1 were either publicly
available from the internet (e.g., the authors’ website) or, in the
case of SSIM, PSNR, and MSE, available from the MATLAB Im-
age Processing Toolkit™ (IPT).

We include the simple mean-square error (MSE) and peak
signal-to-noise (PSNR) measures, as these approaches are still pop-
ular in many application areas. Additionally, we calculate the nor-
malized absolute error (NAE), which is simply the sum of the ab-
solute errors at each location, normalized by the values in the orig-
inal image. We note that PSNR, MSE, and NAE all use the scaled
images resulting from MATLAB’s im2double() function. Our mea-
sures also include the popular SSIM method [WBSS04], which
evaluates the image structure, and its variant multi-scale SSIM
(MS-SSIM) [WSB03], which is designed to evaluate structures
at different scales. The visual information fidelity (VIF) [SB06]
index represents a different type of approach that uses an infor-
mation theory framework to quantify how much information is
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Method Description Possible values Identical value
MSE mean-squared error (e.g., as in [WB09]) � 0 0
PSNR peak signal-to-noise ratio (e.g., as in [WB09]) � 0 1
NAE normalized absolute error � 0 0
SSIM structural similarity index [WBSS04] [0,1] 1
MS-SSIM multi-scale SSIM [WSB03] [0,1] 1
VIF visual information fidelity measurement [SB06] [0,1] 1
MAD most apparent distortion [LC10] � 0 0
FSIM feature similarity index [ZZMZ11] [0,1] 1
GMSD gradient magnitude similarity deviation [XZMB14] � 0 0
NLP-dist normalized Laplacian pyramid distance [LBBS16] [0,1] 0

Table 1: A list of the IQA measures evaluated in this study, followed by a description, the range of possible values, and the value that
indicates that the images are identical.

preserved between images. In addition, the most apparent distor-
tion (MAD) [LC10] method is interesting as it uses a combina-
tion of two different model strategies to evaluate quality: detection-
based and appearance-based. We also evaluate the feature simi-
larity index (FSIM) [ZZMZ11], which uses gradient information
to examine low-level features, as well as the more recent gradi-
ent magnitude similarity deviation (GMSD) [XZMB14] approach,
which also focuses on local gradient similarities. Finally, we in-
clude the recently developed normalized Laplacian pyramid dis-
tance (NLP-dist), which is essentially a root mean-square error
(RMSE) in a multi-scale decomposition or "normalized Laplacian"
domain [LBBS16]. We note that our primary interest in this evalu-
ation is to find an IQA that most agrees with the perceptual scores
from our user study (described in the following section) on CESM
data, and thus we ignore the cost of applying the IQA measures at
this time.

3. Data and compression methods

To determine which of the objective IQA measures described in
the previous section are most consistent with visual evaluations by
climate scientists and other domain relevant experts, we designed
a two-alternative forced choice experiment (Section 4). In that ex-
periment, participants with domain relevant expertise compare ref-
erence and reconstructed CESM diagnostic images to determine
when differences due to compression are visible. In this section,
we explain our choices for which CESM data to evaluate as well as
the lossy compression methods applied.

3.1. CESM version, setup, and variables

Data for this study was obtained from the CESM 1.1 series pub-
lic release. We investigate output data from the atmospheric com-
ponent (the Community Atmosphere Model, or CAM5) using a
spectral-element dynamical core on a grid with a resolution of ap-
proximately 1-degree (i.e., ne = 30). The global grid is a cubed-
sphere, with 48,602 horizonal grid points output as a 1D array and
30 vertical levels. Note that while CESM computations are per-
formed in double-precision, data for the CESM history files (time-
slices) are truncated to single-precision when the NetCDF format
output file is written. As this work is motivated by the use of SSIM
in [BXH⇤17] to evaluate compression artifacts in CESM images,

we use the same CESM version and setup as in that study, the same
compression methods (Section 3.2), as well as a subset of the so-
called representative variables examined in detail in [BXH⇤17]. In
particular, we chose the following four variables in our study:

• TS: surface temperature (2D)
• FSNTC: clear sky net solar flux at the top of model (2D)
• NUMLIQ: grid box averaged cloud liquid number (3D)
• PRECCDZM: convective precipitation rate (2D)

These particular four variables were chosen from the variables
in [BXH⇤17] primarily because (1) they are quite different in their
characteristics, and (2) their behavior varies under the two types
of compression used in this study. TS is a variable of interest to
nearly all climate study disciplines, in particular, atmospheric and
ocean modellers. TS diagnostics are almost always examined in a
first look at new simulation output. Further, because TS data are
relatively smooth, with a modest dynamic range of values, and
no zeros, TS can be compressed relatively easily and effectively
by most compression approaches. In contrast, NUMLIQ data are
nearly half zeros and have a very large dynamic range (20 orders
of magnitude), which makes NUMLIQ difficult to compress for
the two compression methods applied (only lossless compression
passed the measures proposed in [BXH⇤17]). Note that because
NUMLIQ is a 3D variable, we only include an image from a single
level in the study. Precipitation data is also typically included in a
first look at simulation data, and thus we included PRECCDZM as
it is one of two precipitation-related variables studied in [BXH⇤17]
(the other, PRECSC, contains more than 75% zeros and is challeng-
ing for one of the compression approaches in the study). Addition-
ally, both PRECCDZM and NUMLIQ contain many zero or near
zero values, which leads to more white space in the visualization
(an attribute that potentially affects how easy it is to notice differ-
ences). Finally, we include the FSNTC variable as top of the model
fluxes are of interest for initial energy balance concerns. FSNTC is
more easily compressed than both NUMLIQ and PRECCDZM, but
more difficult than TS.

The visualizations of each of the four uncompressed variables
can be seen in the top panels of Figures 1, 2, 3, and 4, which also
contain a comparison visualization(s) from compressed data (to be
discussed in later sections). To ensure that the study images and
colormaps felt familiar to those typically evaluated by CESM sci-
entists, the images were created with the NCAR Command Lan-
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Figure 1: The surface temperature variable, TS, is visualized for
the uncompressed data (top) and for speck_4 compression (bot-
tom). User study responses for this example were fairly evenly split
with about 60% seeing no difference and 40% seeing a difference.
Note that axes and legends have been removed to allow participants
to focus on the visualizations.

guage (NCL) [UCA17]. NCL is a popular post-processing utility
for the Earth science community (and CESM scientists in particu-
lar) and is used to create the images in the aforementioned CVDP
and AMWG-DP post-processing tools (see Section 1). As will be
emphasized in the next section, our interest in this work is in detect-
ing differences in the visualizations (and not in quantifying values),
and for that reason, we did not include any axes, text, or colormaps
in the figures that would impact the visual assessment. Also note
that because the dynamic ranges of the four variables are different,
the colormaps are different for each variable (but kept fixed for all
images from the reconstructed data for each variable). For refer-
ence, all visualizations included in the user study can be found in
the supplemental material.

3.2. Lossy compression approaches

As volumes of floating-point scientific data have exploded across
scientific modeling disciplines in recent years, lossy compression
methods are increasingly receiving more attention, and a number
of state-of-the art methods have been developed. Transform meth-
ods are a popular type of lossy approach, modeling the data with
wavelets or discrete cosine transforms, for example, and reducing
the data size by retaining only a subset of the transform coefficients.
Such approaches include the well-known JPEG2000, the more re-
cent ZFP [Lin14] compressor, and SPECK (a discrete wavelet tran-
form with the set partitioned embedded block coder algorithm)
[IP98]. The so-called predictive lossy approaches are widely used

Method TS FSNTC NUMLIQ PRECCDZM
fpzip_12 .01 .03 .11 .11
fpzip_16 .04 .10 .15 .21
fpzip_20 .15 .21 .21 .32
fpzip_24 .28 .32 .28 .42
fpzip_28 .35 .43 .34 .53
fpzip_32 .46 .54 .40 .64
speck_1 .03 .03 .03 .03
speck_2 .06 .06 .06 .06
speck_4 .11 .11 .11 .11
speck_8 .22 .22 .22 .22
speck_12 .34 .34 .34 .34
speck_24 .67 .67 .67 .67
speck_32 .90 .90 .90 .90

Table 2: A list of the compression ratios corresponding to the four
variables used in the study images: TS (surface temperature), FS-
NTC (clear sky net solar flux), NUMLIQ (averaged cloud liquid
number), and PRECCDZM (convective precipitation rate). Note
that because SPECK is a fixed-rate method, the compression ratios
(CRs) are equivalent across variable type.

as well. As the name implies, these approaches traverse the data and
predict upcoming data values based on previously visited values,
typically retaining the residual between the predicted and actual
data value. For example, the SZ compressor ( [DC16, TDCC17])
is a predictive method that uses adaptive error-controlled quanti-
zation, and the well-used FPZIP compressor (which can be lossy
or lossless, depending upon whether any least significant bits are
discarded) encodes residual values with a fast entropy encoder.

Again, given that our motivation for this study comes primar-
ily from the work in [BXH⇤17], we use the same compression
methods in this study: FPZIP [LI06] and SPECK [IP98]. To in-
dicate the amount of compression applied by each approach, we
follow the naming convention defined in [BXH⇤17]. In particu-
lar, the SPECK compressor is a fixed-rate method, and we use
the notation speck_B to indicate the bit target rate by B. We use
B 2 {1, 2, 4, 8, 12, 24, 32}, noting that speck_1 is the most aggres-
sive and speck_32 is the least. As in the work in [BXH⇤17], we
map the 1D array of grid points output by CESM (in space-filling
curve ordering) onto the six 2D faces of the cubed-sphere and ap-
ply compression to each face separately. This mapping step im-
proves the spatial coherence of the data (and increases its dimen-
sion to 2D to match a natural latitude-longitude ordering), which
greatly improves the transform method’s compression ratios. For
the FPZIP compressor, we use fpzip_N to denote FPZIP, where N
is the number of bits retained before quantization. In this study, we
use N 2 {12, 16, 20, 24, 28, 32}, noting that fpzip_32 is lossless as
we are compressing single-precision data.

Table 2 contains the compression ratio (CR) for each of the four
CESM variables for each compressor variant. We define the CR as
the ratio of the size of the compressed file to that of the original file,
meaning that a smaller number indicates greater compression.
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4. User study

In image quality measures, subjective evaluation – in the form
of mean opinion scores (MOS) – is often considered the ground
truth [SWH16, SSB06] to measure the effect of a “deformation" or
change to an image. In this work, any changes to the images are due
to increasing levels of compression, and the classic psychophysi-
cal two-alternative forced-choice approach (2AFC) [CW12] can be
used to provide an objective evaluation of the impact for each level
of compression.

In this difference-threshold experiment, the research question
asks which standard image quality measure most closely models
the ability of domain relevant experts to see a difference in cli-
mate data visualization due to lossy compression. Participants were
shown two images simultaneously – the uncompressed baseline im-
age as the standard stimulus and a test stimulus chosen from the set
of images derived from the independent study variables, the two
different types of compression (SPECK and FPZIP) and the multiple
levels of compression for each compression type. The dependent
variable was the two alternative choices in this experimental de-
sign: to see a difference or to not see a difference. The experiment
used a between-subject approach where each participant saw a lim-
ited number of trials to minimize any learning effect and to ensure
the study was short enough to encourage participation.

4.1. Method

The experimental stimuli images mirrored the images used to cal-
culate the image quality measures. These images were cropped to
remove text, axes, and color map. Because we are only interested
in whether participants can detect a difference, not in quantifying
variables, removing the axes and color map allowed participants to
focus on the visual differences. The study was implemented using
Qualtrics survey software, and the two stimuli images were pre-
sented vertically using a modified version of the 2AFC module
from the Evaluation Toolkit [TBRA17]. Each image was 890 px
in width and 450 px in height. The study included a screen size
check to ensure participants could see both images on the screen
at the same time. A hidden check also prevented participants from
using a mobile device.

A brief introduction included a description of the study and a se-
ries of example images highlighting subtle differences due to com-
pression. The example images were FSNTC images that had been
further cropped (to minimize potential learning effects). Each par-
ticipant saw a randomized subset of 16 comparisons drawn from the
possible compression types and variables. In order to avoid partic-
ipant learning effects, each participant saw only four images from
each variable type. To ensure that each participant would see sig-
nificant compression effects for each variable, one of these four
images (for each variable) was from speck_1 compression, which
is very aggressive. The other three images were then randomly se-
lected from the remaining compression levels, which were divided
into high and low compression categories as shown in Table 3, with
two images randomly selected from the low compression category
and one randomly chosen image from the high compression cate-
gory. This randomization approach increased the number of trials
for the low compression levels, where differences were more diffi-

Figure 2: The net solar flux variable, FSNTC, is visualized for the
uncompressed data (top) and for fpzip_12 compression (bottom).
User study responses for this example were fairly uniform with
about 96% seeing a difference. Note that axes and legends have
been removed to allow participants to focus on the visualizations.

cult to detect, while still showing participants at least a few com-
parisons with obvious differences.

High Compression Low Compression
speck_2 fpzip_12 speck_8 fpzip_16
speck_4 speck_12 fpzip_20

speck_24 fpzip_24
speck_32 fpzip_28

fpzip_32

Table 3: The high and low compression categories used to deter-
mine the randomized set of image comparisons seen by each par-
ticipant. One image was chosen from the high compression set and
two from the low compression set. Note that speck_1 (which would
be considered high compression) is not listed as it was seen by all
participants for each variable.

The study question was given as: You will see a series of compar-
isons of two images, one of which is uncompressed. Your task will
be to decide if they appear IDENTICAL or DIFFERENT. Since the
images were arranged vertically, the two button options were ar-
ranged horizontally to avoid biasing the viewer. IDENTICAL was
the left button; DIFFERENT was the right button. In addition to
the button choice, the amount of time spent on each stimuli set was
saved.
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Figure 3: Three images are shown for PRECCDZM (convective
precipitation rate). The top is the visualization from the uncom-
pressed data. The middle image has the speck_4 compression
applied and the bottom has fpzip_12 applied. Despite the two
"high compression" approaches (speck_4 and fpzip_12) resulting
in nearly identical compression ratios, there are a number of obvi-
ous differences particularly near the equator. In this example, the
speck_4 image is closer to the original (e.g., see Table 5), and 42%
of the study participants noticed a difference. For fpzip_12, 100%
of the study participants noted a difference.

4.2. Participants

In order to ensure maximum engagement on the part of partici-
pants, the participant pool was solicited (through email) from the
ranks of people familiar with and comfortable viewing scientific
data. Participants included people with backgrounds in climate sci-
ence, computer science, biological and physical sciences, statistics,
and mathematics. A plurality (45%) had backgrounds in climate-
relevant sciences. Participants were assigned a random identifi-
cation number. In all, there were 113 participants with 85 male
(72.2%), 27 female (23.9%), and one declining to answer. The par-
ticipants ranged in age from 19 to 67 with a median age of 41 for
those choosing to answer the age question. There were three par-

ticipants (2.7%) without a college degree (students). The majority
(59.3%) of participants had a doctoral or other professional degree
and another 26.5% had a master’s level degree.

4.3. Visual Acuity Checks

When doing online presentation of studies where color is critical,
it is important to minimize the potential for contamination of the
subject pool by participants with visual acuity issues or color vi-
sion deficiencies (CVD). In this study, this was done both via self-
identification and through online testing for CVD. Each participant
was asked if they had any visual acuity issues or color vision defi-
ciencies and, if so, was asked to describe those issues. Any partici-
pant self-identifying with CVD or visual acuity issues was removed
from the participant pool, regardless of their result on the CVD test.
Each subject completed an online presentation of the Farnsworth
D-15 (FD-15) color cap arrangement test for CVD [CJJ93]. In the
FD-15, a subject is required to order a standard set of 15 color
patches. While each type of CVD has somewhat typical presen-
tations of incorrectly ordered results, the spectrum of CVD can re-
sult in a wide range of errors. Taking a conservative approach, any
participant whose FD-15 ordering included more than one set of
flipped patches was excluded from the participant pool. The set of
people self-identifying with CVD or a visual acuity issue or failing
the CVD test was 17 people (15.0%). While this is larger than might
be expected from the general populace, it does reflect a quite con-
servative approach to minimizing CVD effects. The median time
spent on the full study was 16 minutes.

4.4. Study data

Figures 1 and 2 show example visualizations for TS and FSNTC,
respectively. For TS in Figure 1, study participants were fairly
evenly split as to whether the images were identical or not. For FS-
NTC in Figure 2, nearly all study participants noticed a difference.
For reference, we include Table 5, which lists the IQA measure val-
ues (in the same order as in Table 1) for each image and compres-
sion level, followed by the user study responses for each image.
Before discussing our modeling and analysis in the next section,
we note that many interesting observations can be made by visual
inspection of the raw data in Table 5 together with the CR values
from Table 2 (reproduced in Table 5), and we discuss a few here.

First, we observe that speck_1 is quite aggressive; its CR = .03
represents a roughly 33x reduction in the size of the data. (Re-
call that we specifically chose to show speck_1 to each partici-
pant for each variable.) The fpzip_12 approach is similarly aggres-
sive (in terms of CR) on variables TS and FNSTC (which are the
two "easier-to-compress" variables), and the user study results in-
dicate that the resulting images were obviously different as all but
a single participant noted the differences for these two variables
(with speck_1 and fpzip_12). On the other hand, variables PREC-
CDZM and NUMLIQ are compressed by speck_1 about 4x more
aggressively than by fpzip_12. But despite fpzip_12’s more con-
servative rate, all study participants correctly identified differences
in the resulting images. However, with speck_1, differences in the
images were not uniformly identified by participants, particularly
for NUMLIQ. This result for the images is somewhat in conflict
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with the assertion made in [BXH⇤17] that transform methods, such
as SPECK, do not work very well on hard-to-compress variables
such as NUMLIQ. Certainly for the visual analysis, SPECK leaves
fewer visible artifacts in this case. In particular, for NUMLIQ, both
speck_4 and fpzip_12 have the same CR = .11, but all study par-
ticipants noted a visual difference with fpzip_12 and no partici-
pants noted a difference with speck_4. We note that the work in
[BXH⇤17] discusses the strengths and weaknesses of these two dis-
tinct lossy compression approaches (SPECK and FPZIP) on CESM
variables with differing characteristics.

The PRECCDZM variable additionally highlights how differ-
ently the two types of lossy approaches can affect the visualization.
Consider the images for speck_4 and fpzip_12 in Figure 3, both of
which are categorized as "high compression" in Table 3 and have
the same CR = .11. While the speck_4 image (middle) has few mi-
nor features that differ from the original image (top), the fpzip_12
image (bottom) has quite obvious differences.

Another point to note is the difference in how quickly FPZIP
reaches the "ideal" IQA measure value relative to SPECK for the
two easy-to-compress variables, TS and FNSTC – not the case for
the remaining "difficult" variables. The reason for this is that FPZIP
performs lossy compression by discarding least significant bits. For
variables TS and FNSTC, which are smooth and have modest dy-
namic ranges, the least significant bits are truly unimportant (and
are likely small-scale noise). Even though transform methods are
known to work well on smooth data, they achieve lossy compres-
sion by eliminating coefficients of the least important basis func-
tions. It follows then that this strategy affects more than just the
most aggressive levels of SPECK compression. We do not mean to
imply by this observation that the transform approach is inferior,
but simply that it has different implications for the visualization.
In contrast, the transform approach appears superior in the context
of the previous discussion of the PRECCDZM and NUMLIQ vari-
ables.

5. Analysis of survey data

Our goal is to identify which of the IQA measures best describes
the data from the user evaluation study. For practical considera-
tions in an operational implementation, we are looking to use a
single measure, rather than a combination. Once identified, we can
then determine a threshold best-suited for this measure to ensure
that visual renderings of the compressed climate model data are in-
distinguishable from renderings of the original data. The selected
measure (and its threshold) can then be incorporated in the suite of
measures used to safeguard against compression negatively affect-
ing the scientific integrity of the climate model output.

5.1. Methods

To model the relationship between the responses by the participants
and each of the candidate measures, we employ generalized linear
model regression (see [MN89] for an overview). We model the re-
sponses shown in the last two column of Table 5 as coming from a
binomial distribution, which provides the flexibility to model pro-
portions rather than direct counts. This way we can incorporate the
varying sample sizes for each image resulting from our randomized

Figure 4: Example visualizations are shown for NUMLIQ, the grid
box averaged cloud liquid number. The top image is from the un-
compressed data. The middle image has the fpzip_20 compression
applied to the data, and no study participants noticed the differ-
ence. The bottom image has speck_8 applied to the data, and while
the resulting image is equivalent to the original image, one partic-
ipant noted a difference.

setup. When modeling proportions, the response should be in the
range from 0 to 1, which is achieved by using specific link func-
tions in the regression setup. The canonical link function for the
binomial distributions is the logit function, which we test in ad-
dition to the probit and complementary log-log link functions. A
detailed discussion of link functions for the binomial distribution
can be found in [Col02].

Given the size and range of the measures, we model each predic-
tor using its original values as well as a log-transformed version.
(Note that because MSE, PSNR, and NAE are highly correlated,
we limit our evaluation to NAE.) For consistency between mea-
sures, we subtract the measures having 1 as their identical value
(see Table 1) from 1. For the log-transformed version, we also add
a small number, namely the closest power of 10 below the lowest
value occurring in the data, to avoid numerical issues with the log
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logit probit comp log-log
NAE 57.13 61.24 111.84
SSIM 34.61 37.60 62.28
MS-SSIM 39.99 42.07 112.15
VIF 38.59 44.72 39.23
MAD 63.31 67.93 85.27
FSIM 42.61 45.57 76.88
GMSD 37.78 46.66 55.78
NLP-dist 37.68 44.31 76.11

Table 4: Deviance as a function of predictor and link function.

being undefined at zero. Deviance is used as the main criterion for
model fit. Alternatively, we also evaluate the Anscombe residuals
(discussed in Chapter 5 in [Col02]) as a secondary means of model
diagnostics. The only form of quality control we perform on the
participant data is imposing a forced zero for any “DIFFERENT”
values for those images where the sum of the absolute differences
between the original and the compressed images is zero. Clearly,
if there is truly no difference and all measures are accordingly, and
correctly, at their identical value, it is not sensible to try to model
those images as anything other than identical.

5.2. Results

The models based on the log-transformed measures perform uni-
versally better, and we will from here onwards limit our discus-
sion to the model results based on the log-transformed predictors.
Deviance and Anscombe residuals led to the exact same ranking
between measures and within link function choices. For succinct-
ness, only the deviance results are shown in Table 4. The best fit-
ting model, corresponding to the lowest deviance value, is using
the log-transformed SSIM as a predictor and the logit link func-
tion. A visualization of the fit for the model using SSIM for all
three link functions along with the observed responses are shown in
Figure 5. For comparison, the visualization of the fit for the model
using MAD, which corresponds to the highest deviance value (for
the logit link function), is shown in Figure 6. (Images of the fits for
all the IQA measures can be found in the supplemental material.)
We note that neither the MAD measure nor the others are unrea-
sonable, but the SSIM performs the best with regard to our study
data. While it would be interesting (and useful) to understand the
underlying reason as to why SSIM performs better than the others,
we do not have a hypothesis at this time.

Given these results, it is interesting to note that the SSIM thresh-
old used in [BXH⇤17] was chosen as 0.98 based on suggestions
from the medical literature (e.g, [GKS⇤12a], [Weg10]). Using a
SSIM threshold of 0.98, the estimated proportion different for this
threshold value is 0.9588 (0.9740, 0.9354), where the values in
parenthesis provide the 95% confidence bounds for the estimate.
Given that our model indicates that almost every scientist viewing
data compressed at this threshold would perceive a difference, the
threshold used by [BXH⇤17] appears too lenient to be of practi-
cal use. While the exact determination of a threshold warrants fur-
ther study, a SSIM threshold value on the order of 0.99995 corre-
sponding to an estimate of proportion different of 0.0100 (0.0237,
0.0042) seems a more appropriate choice for climate model data.

Figure 5: Best fitting model using log-transformed SSIM as a pre-
dictor and the logit link function.

Figure 6: Worst fitting model using log-transformed MAD as a
predictor and the logit link function.

6. Concluding remarks and future work

In this manuscript, we describe the results of a large-scale user
study conducted with domain relevant participants to evaluate a
number of well-known image quality measures in the context of
lossy compressed climate model data. While all the measures that
we evaluate show reasonable predictive ability to gauge when ex-
pert users perceive differences, the SSIM IQA measure performs
best. It is interesting to note that the SSIM values at which sci-
entific users perceive differences are much higher than what was
previously found in the literature. Consider an SSIM value of 0.98,
which appears to be considered a normal to conservative thresh-
old in the medical literature. However, virtually all scientists in
our study perceive a difference in climate model output. Our find-
ings indicate that using an SSIM threshold on the order of 0.99995
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might be required for climate model output to ensure visually iden-
tical data.

For lossy compression to be accepted and adopted by the CESM
modeling community, users must have confidence in the data.
While ensuring that visualizations in the post-processing workflow
are not noticeably altered may seem quite conservative, this step
should positively contribute to user confidence. However, it is im-
portant to note that “passing" a visual check alone, even with a
full reference IQA, is not sufficient to determine that a particu-
lar compression type and level is acceptable for a certain climate
model variable. For example, consider the NUMLIQ variable im-
ages, shown in Figure 4. Both speck_8 and fpzip_20 had a sim-
ilar CR value (.22 and .21, respectively), and their corresponding
images are nearly identical in terms of the IQA measures (e.g.,
Table 5) – in fact, the speck_8 image is identical to the original.
However, the authors in [BXH⇤17] classify NUMLIQ as a vari-
able that requires lossless compression due to its failure on other
(non-visual) measures. Indeed, we advocate that a visual measure
be part of a comprehensive suite of well-designed measures that
can be shown to detect problematic data loss due to lossy com-
pression, particularly given that visualizations are ubiquitous in
post-processing workflows of climate simulation data. Because cli-
mate scientists have shown reluctance to embrace lossy compres-
sion (e.g., [BHM⇤16]), such a suite should bolster CESM users’
confidence and willingness to use lossy compression.

The methodology used in this paper can be applied across a wide
range of data types, compression approaches, and potentially be
improved by considering other color maps. However, this work did
require certain design choices. We chose a single climate data set
and four variables. The variables were chosen to represent com-
mon variables as well as variables that are challenging to compress
(e.g., cloud liquid and precipitation), and to explore both fields with
many zeros (so less happening visually) and fields with no zeros
(surface temperature). Therefore, we expect that the threshold and
measure recommended would be appropriate for most of the CESM
atmospheric model output variables (as with the other non-visual
measures recommended in [BXH⇤17]). Further, the two lossy com-
pression algorithms used in this study (SPECK and FPZIP) are quite
different, but represent the two most commonly used categories of
lossy compression approaches: transform and predictive methods.
Because our IQA measure (and threshold) recommendations are
applicable to both of these disparate approaches, we have no reason
to believe that they would not be appropriate for any lossy method
belonging to these two popular categories.

We made the choice to use the rainbow color map because of
its familiarity to climate and computational scientists (domain rel-
evance). We acknowledge the perceptual limitations of the rainbow
color map. However, a cursory count of the data sets in the NCAR
Climate Data Guide [NCA] still has a majority of thumbnails using
a rainbow-based color map, and the color map used in the study
images represents typical output for diagnostic images produced
by CESM tools. That said, the question of color map choice is cer-
tainly an avenue for future work. Using a more perceptually uni-
form color map or one with higher discriminative power may well
push the threshold for visually identical data to a higher level.

Another design choice was to use participants with domain rel-

evant expertise. Although we were not attempting to have the par-
ticipants complete a domain relevant task (such as in [DPR⇤18]),
we did want to ensure engagement on the part of participants. Par-
ticipants were not asked to rate their level of comfort with scien-
tific visualizations or specific level of expertise, but the high per-
centage of participants with advanced degrees or who cited cli-
mate science in their background gives us confidence in a suffi-
cient level of engagement with the comparison task that was pre-
sented. Note that this relatively narrow study (one color map, four
variables, two compression types, 6 or 7 levels of compression)
required over 30 hours of participant time. Using only domain rel-
evant experts may be a prohibitive requirement to extending this
work to a wider range of color maps, data domains, compression
approaches, or variable types. However, a widening body of liter-
ature using crowdsourced participant pools for visualization tasks
(e.g., [HB10] or [WTB⇤18]) indicates that a simple task, such as
the identical/different comparison in this paper, may be appropriate
for crowdsourcing, allowing interested researchers to expand and
generalize this work to their particular areas of interest.

Our work here indicates that the SSIM metric is well-suited
for the type of diagnostic images commonly evaluated by climate
scientists. As far as applicability beyond climate data, the higher
threshold recommendation for SSIM may be desirable for other
types of model simulation data where visualization is important in
post-processing workflows and any detectable artifacts from com-
pression are undesirable. We note that this criteria is more stringent
than, for example, the "diagnostically lossless" requirement (see,
for example, [SoRE11, KUBW⇤14]) often desired in the medical
literature, where the goal is to reach the same diagnosis/conclusion
from the data – not necessarily avoid any visual differences. Further
research is needed to determine whether different types of simula-
tion data would require different IQA measure thresholds for eval-
uating compression and if generalizations can be drawn.
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Variable and IQA metrics User study responses
Compression CR MSE PSNR NAE SSIM MS-SSIM VIF MAD FSIM GMSD NLP-dist Identical Different

TS
fpzip_12 0.01 5.92E-02 12.2796 1.48E-03 0.8045411 0.4470091 0.4081 177.492 0.7299792 0.4959 0.3188 0 35
fpzip_16 0.04 0 1 0 1.0 1.0 1.0 0 1.0 0 0 14 0
fpzip_20 0.15 0 1 0 1.0 1.0 1.0 0 1.0 0 0 22 0
fpzip_24 0.28 0 1 0 1.0 1.0 1.0 0 1.0 0 0 17 0
fpzip_28 0.35 0 1 0 1.0 1.0 1.0 0 1.0 0 0 27 0
fpzip_32 0.46 0 1 0 1.0 1.0 1.0 0 1.0 0 0 29 0

speck_1 0.03 3.71E-4 35.3051 1.70E-5 0.9774348 0.9892419 0.7502 53.961 0.9736993 0.0771 0.1201 2 94
speck_2 0.06 1.56E-4 38.0646 6.93E-6 0.9902174 0.9954218 0.8776 40.630 0.9875604 0.0512 0.0787 2 23
speck_4 0.11 2.76E-5 45.5900 1.51E-6 0.9976131 0.9989622 0.9649 19.818 0.9976458 0.0205 0.0343 22 14
speck_8 0.22 3.65E-6 54.3712 1.55E-7 0.9998129 0.9999103 0.9959 5.594 0.9998766 0.0033 0.0093 18 1
speck_12 0.34 3.65E-8 72.1084 6.05E-9 0.9999958 0.9999974 0.9999 1.019 0.9999990 0.0004 0.0012 20 1
speck_24 0.67 0 1 0 1.0 1.0 1.0 0 1.0 0 0 20 0
speck_32 0.90 0 1 0 1.0 1.0 1.0 0 1.0 0 0 19 0

FNSTC
fpzip_12 0.03 4.46E-3 23.5102 2.27E-4 0.8541187 0.8254689 0.5066 126.646 0.8064006 0.3666 0.2293 1 23
fpzip_16 0.10 0 1 0 1.0 1.0 1.0 0 1.0 0 0 17 0
fpzip_20 0.21 0 1 0 1.0 1.0 1.0 0 1.0 0 0 21 0
fpzip_24 0.32 0 1 0 1.0 1.0 1.0 0 1.0 0 0 17 0
fpzip_28 0.43 0 1 0 1.0 1.0 1.0 0 1.0 0 0 22 0
fpzip_32 0.54 0 1 0 1.0 1.0 1.0 0 1.0 0 0 24 0

speck_1 0.03 4.00E-4 33.9773 2.64E-5 0.9582047 0.9847898 0.6581 42.900 0.964863 0.0896 0.1337 0 96
speck_2 0.06 2.13E-4 36.7068 1.40E-5 0.9782505 0.9923561 0.7791 31.843 0.9815798 0.0662 0.0992 1 36
speck_4 0.11 4.97E-5 43.0371 3.32E-6 0.9945575 0.9981294 0.9338 17.556 0.9949551 0.0341 0.0469 9 26
speck_8 0.22 1.20E-6 59.1964 9.98E-8 0.9997848 0.9999387 0.9967 3.792 0.9998806 0.0052 0.0085 22 3
speck_12 0.34 1.74E-7 67.5952 1.49E-8 0.9999882 0.9999982 0.9994 0 0.9999852 0.0011 0.0019 17 0
speck_24 0.67 0 1 0 1.0 1.0 1.0 0 1.0 0 0 22 0
speck_32 0.90 0 1 0 1.0 1.0 1.0 0 1.0 0 0 25 0

NUMLIQ
fpzip_12 0.11 4.62E-4 33.3518 1.27E-5 0.9626904 0.9782720 0.7345 60.020 0.9572827 0.1066 0.1444 0 36
fpzip_16 0.15 2.25E-6 46.4727 6.57E-7 0.9979233 0.9992209 0.9640 12.249 0.9980807 0.0195 0.0316 5 11
fpzip_20 0.21 1.91E-6 57.1824 5.32E-8 0.9998742 0.9999561 0.9960 3.430 0.9998585 0.0037 0.0086 24 0
fpzip_24 0.28 0 1 0 1.0 1.0 1.0 0 1.0 0 0 26 0
fpzip_28 0.34 0 1 0 1.0 1.0 1.0 0 1.0 0 0 25 0
fpzip_32 0.40 0 1 0 1.0 1.0 1.0 0 1.0 0 0 19 0

speck_1 0.03 3.46E-5 44.6078 1.03E-6 0.9964475 0.9986568 0.9466 15.504 0.9970395 0.0250 0.0386 28 68
speck_2 0.06 5.64E-6 52.4886 1.74E-7 0.9994682 0.9998267 0.9883 5.763 0.9996166 0.0092 0.0151 21 8
speck_4 0.11 3.01E-7 65.2190 1.06E-8 0.9999911 0.9999974 0.9991 0.742 0.9999880 0.0013 0.0028 31 0
speck_8 0.22 0 1 0 1.0 1.0 1.0 0 1.0 0 0 22 1
speck_12 0.34 0 1 0 1.0 1.0 1.0 0 1.0 0 0 11 0
speck_24 0.67 0 1 0 1.0 1.0 1.0 0 1.0 0 0 17 0
speck_32 0.90 0 1 0 1.0 1.0 1.0 0 1.0 0 0 26 0

PRECCDZM
fpzip_12 0.11 5.07E-4 32.9426 1.46E-5 0.9679866 0.9810663 0.7952 62.252 0.9559590 0.1063 0.1413 0 34
fpzip_16 0.21 8.78E-6 50.5638 2.96E-7 0.9991952 0.9997103 0.9847 7.643 0.9992886 0.0094 0.0192 15 2
fpzip_20 0.32 6.85E-7 61.6417 2.28E-8 0.9999365 0.9999771 0.9986 3.484 0.9999743 0.0023 0.0062 23 1
fpzip_24 0.42 3.14E-7 65.0272 1.01E-8 0.9999852 0.9999972 0.9992 0 0.9999996 0.0005 0.0029 16 0
fpzip_28 0.53 0 1 0 1.0 1.0 1.0 0 1.0 0 0 16 0
fpzip_32 0.64 0 1 0 1.0 1.0 1.0 0 1.0 0 0 21 0

speck_1 0.03 1.61E-4 37.9426 5.25E-6 0.9837388 0.9937612 0.8403 33.438 0.9847874 0.0518 0.0845 6 90
speck_2 0.06 6.22E-5 42.0592 2.07E-6 0.9930488 0.9972905 0.9151 21.838 0.9939472 0.0314 0.0536 3 28
speck_4 0.11 1.67E-5 47.7701 5.50E-7 0.9981441 0.9993690 0.9723 11.984 0.9983560 0.0157 0.0274 18 13
speck_8 0.22 1.52E-6 58.1735 5.11E-8 0.9998141 0.9999457 0.9969 5.367 0.9997921 0.0058 0.0091 18 1
speck_12 0.34 4.96E-7 63.0424 1.64E-8 0.9999729 0.9999956 0.9987 0.207 0.9999859 0.0006 0.0037 29 0
speck_24 0.67 0 1 0 1.0 1.0 1.0 0 1.0 0 0 24 0
speck_32 0.90 0 1 0 1.0 1.0 1.0 0 1.0 0 0 24 0

Table 5: For each variable and lossy compression method/level, we list the calculated IQA metric values (in the same order as in Table 1)
for the resulting diagnostic image. In the rightmost two columns, we list the user study responses ("Identical" or "Different") for each image.
The compression levels are listed from highest compression to lowest compression ratio.
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